February 2, 1994
WOOCMAL VARSITY MEET
RCUND I: Combinations and permutations
ALL ANSWERS MUST BE IN SIMPLEST EXACT FORM AS POSITIVE INTEGERS

1. In how many ways can the five positions on a basketball team be assigned among 7 playtra?
2. In a league of 10 teams, how many league games will be played in a seas on if each team plays two game. with every other team?
3. Three couples go to the movies and sit together in a row of six seats. In how many ways car these people arrange themselves if each couple sits together?

ANSWERS

(1 nt) 1 .
(2 pts) 2.
(3 pts) 3. \qquad
Auburn, Doherty, Note Dame

February 2, 2974

ROUND II: Algebra 1 - open

ALL ANSWERS MUST BE EXPRESSED TN SIMPLEST EXACT FORM OR AS dECIMALS ROTTDED TO FOUR DETTMAL PLA 'ES

1. Solve: $\frac{3 a}{5}-\frac{a}{2}=\frac{1}{20}$
2. If $\frac{1}{x^{3}}-\frac{1}{x^{2}}-\frac{1}{x}-1=0$, what is the value of

$$
x^{3}+x^{2}+x+1 ?
$$

3. Find the value of $x+y+z$ given that:
$x+y=z$
$x+z=y+10$
$y+z=x-4$

ANSWERS

```
(1 nt) 1. d}
(2 pt:)
(3 pts) 3.
Note Dame, West Boylstor. Tahanto
```

ROJNL IIT: Logarithms, exponents and radicals
ALL AFENETS MUST BE EXPRESSED IN SIMPLEST EXACT FORM OR AS DFEIMALS ROUNDED TO FOUR DEIIMAL PLACES
L. Simplify: $\frac{2^{-4}+2^{-3}+2^{-2}}{2^{-1}+2^{0}+2^{1}}$
2. Solve: $\log _{2} x+\log _{2}(x-2)=2$
3. a) Find all integers x such that

$$
(\sqrt{x}-1)(\sqrt{x})(\sqrt{x}+1)=6
$$

b) How many reel, non-integer roots does the equation in a) have?

Bot in parts must be correct for 3 points - no part credit.

ANSWERS
(1 pt) $?$. \qquad
(2 pts) 2 . \qquad
(3 pts) 3.
a) \qquad b)

Algonquin, Bancroft, Burncoat, Mass. Academy

1. If $\overline{\mathrm{AD}}\|\overline{\mathrm{BE}}\| \overline{\mathrm{CF}}, \mathrm{A}$? $=18, \mathrm{DE}=15$ and $E F=1 ?$ find $A B$.

2. Find the degree measure of the angle formed by extending \therefore ices $\overline{\mathrm{AE}}$ and $\overline{\mathrm{ED}}$ of regular nint-sided polygon ABGDEFGHI until these extensions meet.
3. In parallelogram $A B^{\wedge} D$, the bisector of $Z A B S$ intersects $\overline{A D}$ at P. If $P D=5, B P=6$, and $C P=6$, find $9 D$.

ARD: BR S
(1 nt) 1 .
(1 n:) ? \qquad
(3nir) 3. \qquad
'il intone, soutane, 'rn caruso
\{Mn,) V: Analytic sermetry of lines and conic sections
) © CI I 4LD ROUly) $)_{\text {(}}$ (POUR DECIMAL PLACES

1. Write an equation in $a x+b y=c$ form for the line whose y-intercept is -7 and whose x-intercept is 10 .
2. Find the coordinates of the upper or right hand, whichever is appropriate, endpoint of the minor axis of the ellipse with equation $(x+2)^{2}+4(y+3)^{2}=9$.
3. A circle of radius 3 with center at $(0,5)$ is drawn. A tangent to the circle which passes through the origin intersects the circle at (abb) in the first quadrant. "i nl - an- .

Arisw山R
(1 nt) 1 .
$(2 n t a) 2 . \quad(\quad)$
(3 ot s) 3. $a=\quad b=$
Bartlett, Note Dame, St. Johns. South

TEAY ROUND: TODics of previous rounds and open

$$
2 \text { points each }
$$

A־L ANSWERS MUST BE IN STMPLEST EXACT FORM OR AS DETMMALS ROINDED TO ROUR DECIMAL PLAJES
2. U.S. ridio stations use an ondered set of three or fous letters for their call letters. The first letter must be W or K. How reny more different call letter sets are possible if letters may be repeated within a set than if no letter may be repeated within a set?
2. If $x=\frac{y-z}{1+y z}$, where $y=\frac{1}{t-1}$ and $z=\frac{1}{t+l}$, find x in terms of t.
3. If $\log _{7} 25=1.39794$, find the number of digits in 25^{100} when it is multiplied out.
4. Each interior andie of a certain requiar polygon has a masure of 25° more than that of an interior angle of a regular octaron. How many more sides does this reaular oolyon have than the resular octap;on?
5. Find the conrdinates of the focal point of the parabola with equatiun $\quad x^{2}-\frac{1}{4} x-12 y+16=0$.
6. Find the suir of ail solutivins of $\cos 2 x+\cos x=0$, with $0 \leq x \leq 2 \pi$.
?. Find the polynomial square root of $x^{4}-6 x^{3}+13 x^{2}-12 x+1+$ wh. ch 'as a constant term of th.
9. Oonsider a set of rour noncoplanar points. Ist $P=$ the number of lines determined by the points of the set. Let $Q=t h e n u m b e r$ of planes determined by the same points. Let $R=$ the number of pairs of skow lines determined by the same polnts. Let $S=$ the number of triangles determined by the same points. Evalcate: $P+\hat{a}+R-S$
3. If $x_{0}=1$ and $x_{1}=3$ and the relation $x_{n}{ }^{?}-x_{n-1} x_{n+1}=(-1)^{n}$ is tive fur $n \geq 1$, find x_{3}.

Aubuin, Bancroft, Bromfield, Eu, nceat, Clintor, Quaboar, St.John's, Woirenter Academy

February 2, 1994

